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Agenda

• Linux Containers
• Docker
• Demo



Linux Containers
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Linux Containers
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What is a Linux Container?
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Why Use Linux Containers?

• Lightweight virtualization solution
‒ Isolated from the other processes
‒ 1 kernel to rule them all
‒ Normal I/O
‒ Dynamic changes possible without reboot
‒ Nested virtualization is not a problem
‒ No boot time or very short one

• Isolate services (e.g. web server, ftp, ...)
• Provide root read-only access

‒ Mount host / as read-only
‒ Add only needed resources read-write
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Linux Containers Use Cases

• Deploy everywhere quickly
‒ Deploy application and their dependencies together. 

• Enterprise Data Center
‒ Limit applications which have a tendency to grab all resources 

on a system:
‒ Memory (databases)

‒ CPU cycles/scheduling (compute intensive applications)

• Outsourcing business
‒ Guarantee a specific amount of resources (SLAs!) to a set of 

applications for a specific customer without more heavy 
virtualization technologies
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Linux Containers – Limitations

• They cannot run a different OS/architecture
‒ Cannot run Windows containers on Linux

• Risk of evading from containers
‒ Solution: user namespaces

• Shared kernel with the host
‒ Syscall exploits can be exploited from within the container
‒ Solution: seccomp2 (in Linux kernel since 3.5)
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Linux Containers – Security

• Do not give root privileges unless needed
• Apply security patches both on the host and on inside 

of the container
• Secure containers with SELinux, AppArmor

‒ SELinux policy applies to complete container
‒ Support for SELinux with LXC on a case by case basis
‒ AppArmor support is ready upstream

• Paranoid? Run the containers inside of a VM



11

What's New in SLES® 12

• Better integration and management of Linux Containers
‒ Uses libvirt-lxc framework
‒ Same management layer as KVM and XEN
‒ Allows for integration with SUSE Manager and SUSE Cloud
‒ Unified tooling, independent of the “virtualization” mechanism

• SELinux and AppArmor support for LXC
• Filesystem copy-on-write (btrfs integration)
• Docker



Docker
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What is Docker?

“Pack, ship and run any application as a container”
• 50+ million downloads
• 700+ contributors
• 40,000+ “Dockerized” apps in Docker’s index
• 128+ meetups over 43 countries
• 15,000 3rd party projects and partnerships
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Speak Like Docker

• Registry
On-line storage for docker images

• Repository
Bag containing several versions of an image

• Image
Prepared system to run in a container

• Container
Linux container running a docker image
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• Workflow for containers like git
‒ Commits; push / pull
‒ DevOps oriented

• Better disk usage: changes layers
• Easy to build new images
• Allows for image versioning
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Docker
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Docker – SLES® 12
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SUSE® and Linux Containers
• SLES 11

‒ SP2 introduced Linux Containers (LXC)
‒ SP3 brought further enhancements (easy configuration)

• SLES 12
‒ Introduced Docker
‒ Templates for SLE 12, SLE 11 SP3, SLE 11 SP2
‒ KIWI (image building tool) can build Docker images
‒ Tool to create SLE Docker images
‒ Moved from LXC to libvirt-lxc

• SLES 12 coming soon (as an update)
‒ YaST interface for Docker
‒ Easy to get SLES 11 SP3 and SLES 12 Docker images



Questions & Answers



Thank you.
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It's Demo Time!
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Creating a Container

• Install docker
# zypper in docker

• Start the docker daemon
# systemd start docker

• Search the registry for opensuse image
# docker search opensuse

• Grab the opensuse image
# docker pull opensuse

• List local images
# docker images
REPOSITORY  TAG       IMAGE ID       CREATED       VIRTUAL 
SIZE
opensuse    13.1      14192d983363   4 weeks ago   598.3 MB
opensuse    bottle    14192d983363   4 weeks ago   598.3 MB
opensuse    latest    14192d983363   4 weeks ago   598.3 MB

• Create a new container and run bash in it
docker run -t -i opensuse:latest /bin/bash
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Working with Containers

• Show containers
# docker ps -a
CONTAINER ID IMAGE         COMMAND   STATUS
074190eb58c4 opensuse:13.1 "/bin/bash" Up 2 minutes

• Stop a container
# docker stop 074190eb58c4

• Start a container
# docker start 074190eb58c4

• Delete a container
# docker rm 074190eb58c4
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Build an Image – Container Way

• Create a container
# docker run -t -i opensuse:latest /bin/bash

• Inside the container, do the changes
# zypper in vim

• Exit the container
• Review the changes in the container
# docker diff 074190eb58c4 

• Commit the change
# docker commit -m "Added vim" \
                -a "Joe Hacker<joe@hacker.com>" \
                074190eb58c4 \
                joehacker/dev:v1
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Build an Image – Dockerfile Way

• Create a build folder
• Create build/Dockerfile with this content
# Build an opensuse with vim
FROM opensuse:latest
MAINTAINER Joe Hacker <joe@hacker.com>
RUN zypper --gpg-auto-import-keys ref
RUN zypper -n in vim

• Build the image
# docker build -t="joehacker/dev:v2" build

• It's all automatic!
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Working with Images

• Delete an image
# docker rmi 5f2fc066be0c

• Show the log of an image
# docker history opensuse:latest

• Share a repository to the registry
# docker push joehacker/dev

• Images can be exported / imported
# docker help save
# docker help import
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