### HO5604 **Deploying MongoDB** A Scalable, Distributed Database with SUSE Cloud

**Alejandro Bonilla** 

Sales Engineer abonilla@suse.com



### Agenda

- SUSE Cloud Overview
  - Getting familiar with the Cloud way
- What is MongoDB?
  - The new workloads
- Hands On

# A SUSE Cloud Overview

### SUSE Cloud



Enterprise OpenStack distribution that rapidly deploys and easily manages highly available, mixed hypervisor laaS Clouds

- Increase business agility
- Economically scale IT capabilities
- Easily deliver future innovations

### **Private Cloud Responsibilities**



# **Platform for Your Data Center Evolution**

#### **Enterprise OpenStack Distribution**

 Leading open source cloud project delivering fast innovation of advanced IaaS cloud services

#### Integration with Ceph Distributed Storage

 Reduce costs with a single software-defined storage solution for massively scalable and reliable block, object, and image storage

#### **Driver of Organizational Innovation**

 Develop and deploy new applications that take advantage of SUSE Cloud capabilities

#### Award-Winning Worldwide Support

 Backed by the excellence of SUSE engineering and the only organization with a 20-year history of supporting open source software



# Fast Installation and Simplified Management

#### **SUSE Cloud Administration Server**

 Faster ROI through faster installation and easier management of OpenStack Cloud

#### **Highly Available Cloud Services**

 Maintain business agility and deliver enterprisegrade SLAs through continuous availability of cloud services

#### **Standardized Product Life Cycle**

 Packaged product integrated with SUSE update and maintenance processes to ensure simplified enterprise maintenance



### SUSE<sub>®</sub> Cloud 4



# What is MongoDB?

# MongoDB

### The document-oriented NoSQL database





### **MongoDB Overview**





# **MongoDB Features**

- JSON Document Model
   with Dynamic Schemas
- Auto-Sharding for Horizontal Scalability
- Text Search
- Aggregation Framework and MapReduce

- Full, Flexible Index Support and Rich Queries
- Built-In Replication for High Availability
- Advanced Security
- Large Media Storage
   with GridFS



# **Drivers and Connectivity**

#### **Drivers**

Drivers for most popular programming languages and frameworks



### Shell

Command-line shell for interacting directly with database





### **Document Oriented**

#### Relational

|                                                       |                                                                            |                                                      | City                                                       |                         |  |
|-------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------|-------------------------|--|
| 0                                                     | Miller                                                                     | Paul                                                 | London                                                     |                         |  |
| 1                                                     | Ortega                                                                     | Alvaro                                               | Valencia                                                   | NO RELATION             |  |
| 2                                                     | Huber                                                                      | Urs                                                  | Zurich                                                     |                         |  |
| 3                                                     | Blanc                                                                      | Gaston                                               | Paris                                                      |                         |  |
| 4                                                     | Bertolini                                                                  | Fabrizio                                             | Rome                                                       |                         |  |
| R<br>Car ID                                           | Model                                                                      | Year                                                 | Value                                                      | Pers ID                 |  |
| R                                                     |                                                                            |                                                      |                                                            |                         |  |
| R<br>Car_ID<br>101                                    | Model<br>Bently                                                            | Year                                                 | Value                                                      | Pers_ID                 |  |
| R<br>Car_ID<br>101<br>102                             | Model<br>Bently<br>Rolls Royce                                             | Year<br>1973<br>1965                                 | Value<br>100000<br>330000                                  | Pers_ID<br>0            |  |
| R<br>Car_ID<br>101<br>102<br>103                      | Model<br>Bently<br>Rolls Royce<br>Peugeot                                  | Year<br>1973<br>1965<br>1993                         | Value<br>100000<br>330000<br>500                           | Pers_ID<br>0<br>0<br>3  |  |
| R<br>Car_ID<br>101<br>102<br>103<br>104               | Model<br>Bently<br>Rolls Royce<br>Peugeot<br>Ferrari                       | Year<br>1973<br>1965<br>1993<br>2005                 | Value<br>100000<br>330000<br>500<br>150000                 | Pers_ID 0 0 3 4         |  |
| R<br>Car_ID<br>101<br>102<br>103<br>104<br>105        | Model<br>Bently<br>Rolls Royce<br>Peugeot<br>Ferrari<br>Renault            | Year<br>1973<br>1965<br>1993<br>2005<br>1998         | Value<br>100000<br>330000<br>500<br>150000<br>2000         | Pers_ID 0 0 3 4 3       |  |
| R<br>Car_ID<br>101<br>102<br>103<br>104<br>105<br>106 | Model<br>Bently<br>Rolls Royce<br>Peugeot<br>Ferrari<br>Renault<br>Renault | Year<br>1973<br>1965<br>1993<br>2005<br>1998<br>2001 | Value<br>100000<br>330000<br>500<br>150000<br>2000<br>7000 | Pers_ID 0 0 3 4 4 3 3 3 |  |

#### MongoDB

{

}

| <pre>first_name: 'Paul',</pre>     |  |  |  |  |
|------------------------------------|--|--|--|--|
| <pre>surname: 'Miller',</pre>      |  |  |  |  |
| <pre>city: 'London',</pre>         |  |  |  |  |
| location: [45.123,47.232],         |  |  |  |  |
| cars: [                            |  |  |  |  |
| { <pre>model: 'Bentley',</pre>     |  |  |  |  |
| year: 1973,                        |  |  |  |  |
| <pre>value: 100000, },</pre>       |  |  |  |  |
| { <pre>model: 'Rolls Royce',</pre> |  |  |  |  |
| year: 1965,                        |  |  |  |  |
| <pre>value: 330000, }</pre>        |  |  |  |  |
| }                                  |  |  |  |  |



# Flexible, Powerful Querying

| Rich Queries | <ul> <li>Find Paul's cars</li> <li>Find cars in London built 1970 - 1980</li> </ul>                 |
|--------------|-----------------------------------------------------------------------------------------------------|
|              |                                                                                                     |
| Geospatial   | <ul> <li>Find all of the car owners within 5km of<br/>Trafalgar Sq.</li> </ul>                      |
|              |                                                                                                     |
| Text Search  | <ul> <li>Find all the cars described as having leather seats</li> </ul>                             |
|              |                                                                                                     |
| Aggregation  | <ul> <li>Calculate the average value of Paul's car<br/>collection</li> </ul>                        |
|              |                                                                                                     |
| Map Reduce   | • What is the ownership pattern of colors by geography over time? (is purple trending up in China?) |

#### MongoDB

{

}

```
first_name: 'Paul',
surname: 'Miller',
city: 'London',
location: [45.123,47.232],
cars: [
    { model: 'Bentley',
        year: 1973,
        value: 100000, ... },
    { model: 'Rolls Royce',
        year: 1965,
        value: 330000, ... }
}
```



### **Document Model Benefits**

- Expressive, Flexible, Simplified Data Modeling
  - A single document can express and encompass a wide variety of notions
  - No need to migrate for simple extensions
  - Fewer collections as most data can be encapsulated in a single document
- Easier Development
  - Developers understand documents as it maps well to their data structures
- Faster Time to Market
  - Agile development means faster results



### Performance



Better Data Locality

**In-Memory Caching** 

In-Place Updates



# Scaling MongoDB

- Replica Sets
  - Redundancy, failover, high availability
- Sharding
  - Auto-paritions data, read/write scalability
- Multi-datacenter deployments
- Tunable durability, consistency
- Engineered for zero downtime



# **High Availability**



- Automated replication and failover
- Multi-data center support
- Improved operational simplicity (e.g., HW swaps)
- Data durability and consistency



# Scalability

#### **Auto-Sharding**



- Increase capacity as you go
- Commodity and cloud architectures
- Improved operational simplicity and cost visibility



### **Sharding and Replication**





### **MongoDB Architecture**







# Thank you.





#### **Unpublished Work of SUSE LLC. All Rights Reserved.**

This work is an unpublished work and contains confidential, proprietary and trade secret information of SUSE LLC. Access to this work is restricted to SUSE employees who have a need to know to perform tasks within the scope of their assignments. No part of this work may be practiced, performed, copied, distributed, revised, modified, translated, abridged, condensed, expanded, collected, or adapted without the prior written consent of SUSE. Any use or exploitation of this work without authorization could subject the perpetrator to criminal and civil liability.

#### **General Disclaimer**

This document is not to be construed as a promise by any participating company to develop, deliver, or market a product. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. SUSE makes no representations or warranties with respect to the contents of this document, and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. The development, release, and timing of features or functionality described for SUSE products remains at the sole discretion of SUSE. Further, SUSE reserves the right to revise this document and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes. All SUSE marks referenced in this presentation are trademarks or registered trademarks of Novell, Inc. in the United States and other countries. All third-party trademarks are the property of their respective owners.

