
www.linuxfoundation.org

Linux Kernel  
Development
How Fast It is Going, Who is Doing It, 
What They are Doing, and Who is  
Sponsoring It 

September 2013

Jonathan Corbet, LWN.net 
Greg Kroah-Hartman, The Linux Foundation 
Amanda McPherson, The Linux Foundation



Linux Kernel Development: 2013 Update2

This is the fifth update of 
this document, which has 
been published roughly 
annually since 2008. It covers 
development through the 3.10 
release, with an emphasis 
on the releases (3.3 to 3.10) 
made since the last update.



Linux Kernel Development: 2013 Update3

Summary
The kernel which forms the core of the Linux system is the result of one of the largest cooperative software projects ever 
attempted.  Regular 2-3 month releases deliver stable updates to Linux users, each with significant new features, added 
device support, and improved performance. The rate of change in the kernel is high and increasing, with over 10,000 
patches going into each recent kernel release. These releases each contain the work of over 1100 developers representing 
over 225 corporations.

Since 2005, nearly 10,000 individual developers from over 1000 different companies have contributed to the kernel. 
The Linux kernel, thus, has become a common resource developed on a massive scale by companies which are fierce 
competitors in other areas.

This is the fifth update of this document, which has been published roughly annually since 2008. It covers development 
through the 3.10 release, with an emphasis on the releases (3.3 to 3.10) made since the last update. It has been a busy 
period, with eight kernel releases created, many significant changes made, and continual growth of the kernel developer and 
user community.

Introduction 
The Linux kernel is the lowest level of software running on a Linux system. It is charged with managing the hardware, running 
user programs, and maintaining the overall security and integrity of the whole system. It is this kernel which, after its initial 
release by Linus Torvalds in 1991, jump-started the development of Linux as a whole. The kernel is a relatively small part 
of the software on a full Linux system (many other large components come from the GNU project, the GNOME and KDE 
desktop projects, the X.org project, and many other sources), but it is the core which determines how well the system will 
work and is the piece which is truly unique to Linux.

The Linux kernel is an interesting project to study for a number of reasons. It is one of the largest individual components on 
almost any Linux system.  It also features one of the fastest-moving development processes and involves more developers 
than any other open source project. Since 2005, kernel development history is also quite well documented, thanks to the use 
of the Git source code management system.  

Some 2012-13 Kernel Development Highlights
The kernel development community remains extremely busy, as will be seen in the statistics shown below. Some of the 
highlights worth noting since the last release of this paper (April 2012) include:

• Almost 92,000 changesets have been merged from 3,738 individual developers representing 536 corporations (that we 
know about).

• A vast array of important new features has been merged into the mainline. These include full tickless operation, user 
namespaces, KVM and Xen virtualization for ARM, per-entity load tracking in the scheduler, user-space checkpoint/
restart, 64-bit ARM architecture support, the F2FS flash-oriented filesystem, many networking improvements aimed at 
the latency and bufferbloat problems, two independent subsystems providing fast caching for block storage devices, 
and much more.

• The longstanding squabble over Android-specific kernel features has faded completely into the background.  The much-
discussed “wakelocks” feature has been quietly replaced by a different mainline solution which is used in the latest 
Android devices.

• The use of automated tools to find bugs in development kernels has increased significantly during this period.  Tools like 
the “trinity” fuzz tester and the zero-day build-and-boot system are finding large numbers of bugs in pre-release kernels, 
shortening the development cycle and enabling the community to deliver higher-quality releases.

• Contributions from the mobile and embedded industries continue to increase. Linaro, Samsung, and TI, for example, 
together contributed 4.4% of the changes in the previous version of this paper; for the period up to 3.10, they 
contributed almost 11% of all changes.

• The kernel project participated in the Outreach Program for Women for the first time, leading to 41 applications for 7 
available positions. During the application process, 374 patches were submitted to the kernel, and over 1/3 of those 
patches were accepted in the 3.10 kernel release.  The intern process is now underway, but the results of that will not 
start showing up until future kernel releases.

Above and beyond all of that, the process of developing the kernel and making it better continued at a fast pace. The 
remainder of this document will concern itself with the health of the development process and where all that code came 
from.



Linux Kernel Development: 2013 Update4

Development Model
Linux kernel development proceeds under a loose, time-based release model, with a new major kernel release occuring 
every 2-3 months.  This model, which was first formalized in 2005, gets new features into the mainline kernel and out 
to users with a minimum of delay.  That, in turn, speeds the pace of development and minimizes the number of external 
changes that distributors need to apply.  As a result, distributor kernels contain relatively few distribution-specific changes; 
this leads to higher quality and fewer differences between distributions.

After each mainline kernel release, the kernel’s “stable team” (currently Greg Kroah-Hartman) takes up short-term 
maintenance, applying important fixes as they are developed.  The stable process ensures that important fixes are made 
available to distributors and users and that they are incorporated into future mainline releases as well.  In recent years we 
have seen an increasing number of cooperative industry efforts to maintain specific kernels for periods of one year or more.

Release Frequency 
The desired release period for a major kernel release is, by common consensus, 8-12 weeks.  A much shorter period would 
not give testers enough time to find problems with new kernels, while a longer period would allow too much work to pile up 
between releases.  The actual time between kernel releases tends to vary a bit, depending on the size of the release and the 
difficulty encountered in tracking down the last regressions, but that variation has decreased in recent years.

The release history for recent kernels is:

Over time, kernel development cycles have slowly been getting shorter. The previous version of this report stated that the 
average cycle lasted about 80 days; now the average is much closer to 70 days.  The only recent development cycle to last 
more than 74 days was 3.1, which was delayed in the aftermath of the kernel.org compromise in 2011. This trend is almost 
certainly the result of improved discipline both before and during the development cycle: higher-quality patches are being 
merged, and the community is doing a better job of fixing regressions quickly. The increased use of automatic testing tools is 
also helping the community to find (and address) problems more quickly.

Rate of Change
When preparing work for submission to the Linux kernel, developers break their changes down into small, individual units, 
called “patches.” These patches usually do only one thing to the source code; they are built on top of each other, modifying 
the source code by changing, adding, or removing lines of code. Each patch should, when applied, yield a kernel which still 
builds and works properly.  This discipline forces kernel developers to break their changes down into small, logical pieces; as 
a result, each change can be reviewed for code quality and correctness.

Kernel Version Release Date
Days of 

Development

3.0 2011-07-21  64

3.1 2011-10-24  95

3.2 2011-12-31  68

3.3 2012-03-18  74

3.4 2012-05-20  63

3.5 2012-07-21  62

3.6 2012-09-30  71

3.7 2012-12-10  71

3.8 2013-02-18  70

3.9 2013-04-28  69

3.10 2013-06-30  63



Linux Kernel Development: 2013 Update5

One other result is that the number of individual changes that go into each kernel release is very large, as can be seen in the 
table below:

By taking into account the amount of time required for each kernel release, one can arrive at the number of changes 
accepted into the kernel per hour. The results can be seen in this table:

The overall rate for the period covered in the previous version of this paper (2.6.35 to 3.2) was 6.71 patches per hour.  As 
can be seen from the tables above, the number of changes being merged into each release is growing over time, even as 
the development cycle is getting shorter, so, as one would expect, the number of changes per hour is growing.  Since the 
release of the 3.2 kernel, the development community has been merging patches at an average rate of 7.14 per hour, though, 
as can be seen, the rate for the 3.10 cycle was significantly higher than that.

It is worth noting that the above figures understate the total level of activity; most patches go through a number of revisions 
before being accepted into the mainline kernel, and many are never accepted at all. The ability to sustain this rate of change 
for years is unprecedented in any previous public software project.

Stable Updates
As mentioned toward the beginning of this document, kernel development does not stop with a mainline release.  Inevitably, 
problems will be found in released kernels, and patches will be made to fix those problems. The stable kernel update 
process was designed to capture those patches in a way that ensures that both the mainline kernel and current releases are 
fixed. These stable updates are the base from which most distributor kernels are made.

Kernel 
Version

Changes 
(Patches)

3.0 9,153

3.1 8,693

3.2 11,780

3.3 10,550

3.4 10,889

3.5 10,957

3.6 10,247

3.7 11,990

3.8 12,394

3.9 11,910

3.10 13,367

Kernel Version
Changes 
Per Hour

3.0 5.96

3.1 3.81

3.2 6.88

3.3 5.94

3.4 7.20

3.5 7.36

3.6 6.01

3.7 7.04

3.8 7.38

3.9 7.19

3.10 9.02



Linux Kernel Development: 2013 Update6

The recent stable kernel update history looks like this:

The number of fixes going into the stable releases is high and getting higher as the discipline for routing fixes to the stable 
trees improves.

The normal policy for stable releases is that each kernel will receive stable updates for a minimum of one development cycle 
(actually, until the -rc1 release of the second cycle following the initial release); thus we see nine or ten approximately weekly 
updates for most kernel releases. Roughly once each year, one release is chosen to receive updates for an extended, two-
year period; as of this writing, the 3.0, 3.4, and 3.10 kernels are being maintained in this manner, and the 3.0 kernel is likely to 
be retired this October.

It is worth noting that some other kernel releases have been adopted for stable maintenance outside of the normal stable 
process; in particular, the 3.2 kernel is currently being maintained by Ben Hutchings.

In summary, the stable update series continues to prove its value by allowing the final fixes to be made to released kernels 
while, simultaneously, letting mainline development move forward.

Kernel Source Size
The Linux kernel keeps growing in size over time as more hardware is supported and new features are added.  For the 
following numbers, we have counted everything in the released Linux source package as ``source code’’ even though a small 
percentage of the total is the scripts used to configure and build the kernel, as well as a minor amount of documentation. 
Those files, too, are part of the larger work, and thus merit being counted.

The information in the following table shows the number of files and lines in each kernel version.

The kernel has grown steadily since its first release in 1991, when there were only about 10,000 lines of code.  At almost 17 
million lines, the kernel is almost two million lines larger than it was at the time of the previous version of this paper.

Kernel Version Updates Fixes

3.0 94 3,764

3.1 10 694

3.2 50 3,943

3.3 8 699

3.4 60 3,122

3.5 7 824

3.6 11 762

3.7 10 724

3.8 13 1,000

3.9 11 751

3.10 10 670

Kernel Version Files Lines

3.0 36,788 14,651,135

3.1 37,095 14,776,002

3.2 37,626 15,004,006

3.3 38,091 15,171,607

3.4 38,573 15,389,393

3.5 39,101 15,601,911

3.6 39,738 15,873,569

3.7 40,912 16,197,233

3.8 41,532 16,422,416

3.9 42,435 16,692,421

3.10 43,029 16,961,031



Linux Kernel Development: 2013 Update7

Who is Doing the Work

The number of different developers who are doing Linux kernel development and the identifiable companies who are 
sponsoring this work have been increasing over the different kernel versions, as can be seen in the following table.

These numbers show a continuation of the steady increase in the number of developers contributing to each kernel release.  
Indeed, the 3.10 kernel saw the most developers ever, while 3.9 included the participation of the most companies ever.

Since the beginning of the git era (the 2.6.11 release in 2005), a total of 9,784 developers have contributed to the Linux kernel; 
those developers worked for a minimum of 1,064 companies.

Despite the large number of individual developers, there is still a relatively small number who are doing the majority of the 
work.  In any given development cycle, approximately 1/3 of the developers involved contribute exactly one patch.  Since 
the 2.6.11 release, the top ten developers have contributed 30,420 changes — 8.4% of the total.  The top thirty developers 
contributed just over 18% of the total. Those developers are below, and the numbers are drawn from the entire git repository 
history, starting with 2.6.12

Kernel Version Developers Companies

3.0 1,131 191

3.1 1,168 189

3.2 1,316 231

3.3 1,247 233

3.4 1,286 245

3.5 1,195 242

3.6 1,224 298

3.7 1,280 228

3.8 1,258 241

3.9 1,388 263

3.10 1,392 243

Name Changes Percentage

Al Viro 4,124 1.2%

David S. Miller 3,690 1.0%

Takashi Iwai 3,387 1.0%

Mark Brown 3,199 0.9%

Tejun Heo 2,888 0.8%

Johannes Berg 2,841 0.8%

Mauro Carvalho Chehab 2,718 0.8%

Russell King 2,526 0.7%

Greg Kroah-Hartman  2,502 0.7%

Thomas Gleixner   2,423 0.7%

H Hartley Sweeten   2,415 0.7%

Ingo Molnar 2,376 0.7%

Paul Mundt   2,268 0.6%

Bartlomiej Zolnierkiewicz 2,076 0.6%

Hans Verkuil 2,074 0.6%

Name Changes Percentage

Alan Cox 1,962 0.6%

Adrian Bunk 1,919 0.5%

Christoph Hellwig 1,877 0.5%

Ralf Baechle 1,840 0.5%

Joe Perches 1,839 0.5%

Eric Dumazet 1,771 0.5%

Axel Lin   1,731 0.5%

Andrew Morton 1,669 0.5%

Trond Myklebust 1,665 0.5%

Randy Dunlap 1,645 0.5%

Jean Delvare 1,539 0.4%

Arnaldo Carvalho de Melo 1,409 0.4%

Dan Carpenter 1,393 0.4%

Peter Zijlstra 1,359 0.4%

Andi Kleen 1,359 0.4%



Linux Kernel Development: 2013 Update8

If we look at the commits since the last version of this paper (3.2 through 3.10), the picture is somewhat different: 

Note that many senior kernel developers, Linus Torvalds included, do not show up on these lists. These developers spend 
much of their time getting other developers’ patches into the kernel; this work includes reviewing changes and routing 
accepted patches toward the mainline.

Who is Sponsoring the Work
The Linux kernel is a resource which is used by a large variety of companies.  Many of those companies never participate 
in the development of the kernel; they are content with the software as it is and do not feel the need to help drive its 
development in any particular direction.  But, as can be seen in the table above, an increasing number of companies are 
working toward the improvement of the kernel. 

Below we look more closely at the companies which are employing kernel developers.  For each developer, corporate 
affiliation was obtained through one or more of: (1) the use of company email addresses, (2) sponsorship information included 
in the code they submit, or (3) simply asking the developers directly.  The numbers presented are necessarily approximate; 
developers occasionally change employers, and they may do personal work out of the office.  But they will be close enough 
to support a number of conclusions.

There are a number of developers for whom we were unable to determine a corporate affiliation; those are grouped under 
“unknown” in the table below.  With few exceptions, all of the people in this category have contributed ten or fewer changes 
to the kernel over the past three years, yet the large number of these developers causes their total contribution to be quite 
high.

The category “none,” instead, represents developers who are known to be doing this work on their own, with no financial 
contribution happening from any company.

Name Changes Percentage

H Hartley Sweeten 2,107 2.3%

Mark Brown 1,418 1.5%

Al Viro 1,311 1.4%

Axel Lin 1,078 1.2%

Johannes Berg 926 1.0%

Mauro Carvalho Chehab 838 0.8%

Hans Verkuil 767 0.8%

Takashi Iwai 750 0.8%

Daniel Vetter 695 0.7%

Sachin Kamat 679 0.7%

Alex Elder 676 0.7%

Tejun Heo 660 0.7%

Greg Kroah-Hartman 655 0.6%

Dan Carpenter 568 0.6%

Laurent Pinchart 565 0.6%

Name Changes Percentage

Lars-Peter Clausen 561 0.6%

Jingoo Han 555 0.6%

Ben Skeggs 532 0.6%

David S. Miller 521 0.6%

Eric Dumazet 521 0.6%

Stephen Warren 513 0.6%

Russell King 495 0.5%

Felipe Balbi 476 0.5%

Wei Youngjun 473 0.5%

Kuninori Morimoto 459 0.5%

Guenter Roeck 445 0.5%

Shawn Guo 443 0.5%

Trond Myklebust 438 0.5%

Eric W. Biederman 428 0.5%

Tomi Valkeinen 408 0.4%



Linux Kernel Development: 2013 Update9

The top 10 contributors, including the groups “unknown” and “none,” make up over 55% of the total contributions to the 
kernel.  It is worth noting that, even if one assumes that all of the “unknown” contributors were working on their own time, 
over 80% of all kernel development is demonstrably done by developers who are being paid for their work.

Interestingly, the volume of contributions from unpaid developers has been in slow decline for many years.  What was 14.6% 
in the previous version of this paper is 13.6% now.  There are many possible reasons for this decline, but, arguably, the most 
plausible of those is quite simple: kernel developers are in short supply, so anybody who demonstrates an ability to get code 
into the mainline tends not to have trouble finding job offers. Indeed, the bigger problem can be fending those offers off.  As 
a result, volunteer developers tend not to stay that way for long.

What we see here is that a small number of companies is responsible for a large portion of the total changes to the kernel.  
But there is a “long tail” of companies (over 500 of which do not appear in the above list) which have made significant 
changes since the 3.2 release.  There may be no other examples of such a large, common resource being supported by 
such a large group of independent actors in such a collaborative way.

Who is Reviewing the Work
Patches do not normally pass directly into the mainline kernel; instead, they pass through one of over 100 subsystem 
trees.  Each subsystem tree is dedicated to a specific part of the kernel (examples might be SCSI drivers, x86 architecture 
code, or networking) and is under the control of a specific maintainer.  When a subsystem maintainer accepts a patch into 
a subsystem tree, he or she will attach a “Signed-off-by” line to it.  This line is a statement that the patch can be legally 
incorporated into the kernel; the sequence of signoff lines can be used to establish the path by which each change got into 
the kernel.

An interesting (if approximate) view of kernel development can be had by looking at signoff lines, and, in particular, at signoff 
lines added by developers who are not the original authors of the patches in question. These additional signoffs are usually 
an indication of review by a subsystem maintainer.  Analysis of signoff lines gives a picture of who admits code into the kernel 
- who the gatekeepers are.

Company Changes Total

None 12,550 13.6%

Red Hat 9,483 10.2%

Intel 8,108 8.8%

Texas Instruments 3,814 4.1%

Linaro 3,791 4.1%

SUSE 3,212 3.5%

Unknown 3,032 3.3%

IBM 2,858 3.1%

Samsung 2,415 2.6%

Google 2,255 2.4%

Vision Engraving Systems 2,107 2.3%

Consultants 1,529 1.7%

Wolfson Microelectronics 1,516 1.6%

Oracle 1,248 1.3%

Broadcom 1,205 1.3%

Company Changes Total

NVidia 1,192 1.3%

Freescale 1,127 1.2%

Ingics Technology 1,075 1.2%

Renesas Electronics 1,010 1.1%

Qualcomm 965 1.0%

Cisco 871 0.9%

The Linux Foundation 840 0.9%

Academics 831 0.9%

AMD 820 0.9%

Inktank Storage 709 0.8%

NetApp 707 0.8%

LINBIT 705 0.8%

Fujitsu 694 0.7%

Parallels 684 0.7%

ARM 664 0.7%



Linux Kernel Development: 2013 Update10

Since 3.2, the developers who added the most non-author signoff lines are:

The total number of patches signed off by Linus Torvalds (568, or 0.7% of the total) has fallen over the years.  That reflects 
the increasing amount of delegation to subsystem maintainers who do the bulk of the patch review and merging. 

Associating signoffs with employers yields the following:

The signoff metric is a loose indication of review, so the above numbers need to be regarded as approximations only.  Still, 
one can clearly see that subsystem maintainers are rather more concentrated than kernel developers as a whole; over half 
of the patches going into the kernel pass through the hands of developers employed by just four companies.  That said, 
subsystem maintainers are less concentrated than they once were, and that trend appears to be continuing.

Conclusion
The Linux kernel is one of the largest and most successful open source projects that has ever come about.  The huge 
rate of change and number of individual contributors show that it has a vibrant and active community, constantly causing 
the evolution of the kernel in response to number of different environments it is used in.  This rate of change continues to 
increase, as does the number of developers and companies involved in the process; thus far, the development process has 
proved that it is able to scale up to higher speeds without trouble.

There are enough companies participating to fund the bulk of the development effort, even if many companies which could 
benefit from contributing to Linux have, thus far, chosen not to. With the current expansion of Linux in the server, desktop, 
mobile and embedded markets, it’s reasonable to expect this number of contributing companies – and individual developers 
– will continue to increase.  The kernel development community welcomes new developers; individuals or corporations 
interested in contributing to the Linux kernel are encouraged to consult “How to participate in the Linux community” (http://
www.linuxfoundation.org/content/how-participate-linux-community) or to contact the authors of this paper or the Linux 
Foundation for more information.

Name Signoffs Percent

Greg Kroah-Hartman 9,965 12.5%

David S. Miller 6,133 7.7%

Mauro Carvalho Chehab 3,847 4.8%

John W. Linville 3,541 4.4%

Andrew Morton 3,403 4.3%

Mark Brown 2,479 3.1%

James Bottomley 1,246 1.6%

Daniel Vetter 1,192 1.5%

Ingo Molnar 1.012 1.3%

Samuel Ortiz 984 1.2%

Name Signoffs Percent

Dave Airlie 940 1.2%

Kyungmin Park 892 1.1%

Rafael J. Wysocki 891 1.1%

Arnaldo Carvalho de Melo 868 1.1%

Felipe Balbi 856 1.1%

Jiri Kosina 803 1.0%

Kukjin Kim 793 1.0%

Linus Walleij 779 1.0%

Benjamin Herrenschmidt 770 1.0%

Jeff Kirshner 760 1.0%

Company Signoffs Percent

Red Hat 20,369 25.7%

The Linux Foundation 9.561 12.0%

Intel 7,244 9.1%

Google 4,605 5.8%

None 4,155 5.2%

SUSE 3,275 4.1%

Samsung 2,684 3.4%

Wolfson Microelectronics 2,474 3.1%

Texas Instruments 2,372 3.0%

IBM 2,245 2.8%

Company Signoffs Percent

Linaro 2,231 2.8%

Parallels 1,258 1.6%

LINBIT 930 1.2%

Fusion-io 815 1.0%

Broadcom 807 1.0%

Consultants 752 0.9%

OLPC 640 0.8%

Wind River 595 0.7%

Pengutronix 587 0.7%

Marvell 580 0.7%



Linux Kernel Development: 2013 Update11

Thanks
The authors would like to thank the thousands of individual kernel contributors, without them, papers like this would not be 
interesting to anyone.

Resources
Many of the statistics in this article were generated by the “gitdm” tool, written by Jonathan Corbet. Gitdm is distributable 
under the GNU GPL; it can be obtained from git://git.lwn.net/gitdm.git.

The information for this paper was retrieved directly from the Linux kernel releases as found at the kernel.org web site and 
from the git kernel repository. Some of the logs from the git repository were cleaned up by hand due to email addresses 
changing over time, and minor typos in authorship information. A spreadsheet was used to compute a number of the 
statistics.  All of the logs, scripts, and spreadsheet can be found at https://github.com/gregkh/kernel-history.



The Linux Foundation promotes, protects and standardizes Linux by 
providing unified resources and services needed for open source to 
successfully compete with closed platforms.

To learn more about The Linux Foundation or our other initiatives 
please visit us at www.linuxfoundation.org


