
1

Whitepapers 1.0
Red Hat Enterprise

Linux 5 IO Tuning Guide
Performance Tuning Whitepaper for Red Hat Enterprise Linux 5.2

 Red Hat Inc.
Don Domingo

Abstract
The Red Hat Enterprise Linux 5 I/O Tuning Guide presents the basic principles of
performance analysis and tuning for the I/O subsystem. This document also provides
techniques for troubleshooting performance issues for the I/O subsystem.

1. Preface ................................................................................................................................... 2
1.1. Audience .....................................................................................................................  2
1.2. Document Conventions ................................................................................................. 3
1.3. Feedback ..................................................................................................................... 4

2. The I/O Subsystem .................................................................................................................  4
3. Schedulers / Elevators ............................................................................................................. 5
4. Selecting a Scheduler .............................................................................................................  6
5. Tuning a Scheduler and Device Request Queue Parameters .....................................................  6

5.1. Request Queue Parameters .......................................................................................... 7
6. Scheduler Types .....................................................................................................................  7

6.1. cfq Scheduler .............................................................................................................  7
6.2. deadline Scheduler ...................................................................................................  8
6.3. anticipatory Scheduler ...........................................................................................  9
6.4. noop Scheduler .........................................................................................................  10

Index                                                                                                                                          10

A. Revision History                                                                                                                   11



Red Hat Enterprise Linux 5 IO Tuning Guide

2

1. Preface
This guide describes how to analyze and appropriately tune the I/O performance of your Red Hat
Enterprise Linux 5 system.

Caution
While this guide contains information that is field-tested and proven, it is recommended
that you properly test everything you learn on a testing environment before you apply
anything to a production environment.

In addition to this, be sure to back up all your data and pre-tuning configurations. It is
also prudent to plan for an implementation reversal.

Scope
This guide discusses the following major topics:
• Investigating system performance

• Analyzing system performance

• Red Hat Enterprise Linux 5 performance tuning

• Optimizing applications for Red Hat Enterprise Linux 5

The scope of this document does not extend to the investigation and administration of faulty system
components. Faulty system components account for many percieved performance issues; however,
this document only discusses performance tuning for fully functional systems.

1.1. Audience
Due to the deeply technical nature of this guide, it is intended primarily for the following audiences.

Senior System Administrators
This refers to administrators who have completed the following courses / certifications:
• RH401 - Red Hat Enterprise Deployment, Virtualization and Systems Management; for more

information, refer to https://1www.redhat.com/1training/1rhce/1courses/1rh401.html

• RH442 - Red Hat Enterprise System Monitoring and Performance Tuning; for more information,
refer to https://1www.redhat.com/1training/1architect/1courses/1rh442.html

• RHCE - Red Hat Certified Engineers, or administrators who have completed
RH300 (Red Hat Rapid Track Course); for more information, refer to
https://1www.redhat.com/1training/1rhce/1courses/1rh300.html

Application Developers
This guide also contains several sections on how to properly tune applications to make them more
resource-efficient.

https://www.redhat.com/training/rhce/courses/rh401.html
https://www.redhat.com/training/architect/courses/rh442.html
https://www.redhat.com/training/rhce/courses/rh300.html


Document Conventions

3

1.2. Document Conventions
Certain words in this manual are represented in different fonts, styles, and weights. This highlighting
indicates that the word is part of a specific category. The categories include the following:

Courier font
Courier font represents commands, file names and paths, and prompts.

When shown as below, it indicates computer output:

Desktop       about.html       logs      paulwesterberg.png
Mail          backupfiles      mail      reports

bold Courier font
Bold Courier font represents text that you are to type, such as: xload -scale 2

italic Courier font
Italic Courier font represents a variable, such as an installation directory: install_dir/bin/

bold font
Bold font represents application programs, a button on a graphical application interface (OK), or
text found on a graphical interface.

Additionally, the manual uses different strategies to draw your attention to pieces of information. In
order of how critical the information is to you, these items are marked as follows:

Note
Linux is case-sensitive: a rose is not a ROSE is not a rOsE.

Tip
The directory /usr/share/doc/ contains additional documentation for installed
packages.

Important
Modifications to the DHCP configuration file take effect when you restart the DHCP
daemon.

Caution
Do not perform routine tasks as root—use a regular user account unless you need to
use the root account for system administration tasks.



Red Hat Enterprise Linux 5 IO Tuning Guide

4

Warning
Be careful to remove only the listed partitions. Removing other partitions could result in
data loss or a corrupted system environment.

1.3. Feedback
If you have thought of a way to make this manual better, submit a bug report through the following
Bugzilla link: File a bug against this book through Bugzilla1

File the bug against Product: Red Hat Enterprise Linux, Version: rhel5-rc1. The Component should
be Performance_Tuning_Guide.

Be as specific as possible when describing the location of any revision you feel is warranted. If you
have located an error, please include the section number and some of the surrounding text so we can
find it easily.

2. The I/O Subsystem
The I/O subsystem is a series of processes responsible for moving blocks of data between disk and
memory. In general, each task performed by either kernel or user consists of a utility performing any of
the following (or combination thereof):

• Reading a block of data from disk, moving it to memory

• Writing a new block of data from memory to disk

Read or write requests are transformed into block device requests that go into a queue. The I/O
subsystem then batches similar requests that come within a specific time window and processes them
all at once. Block device requests are batched together (into an “extended block device request”)
when they meet the following criteria:

• They are the same type of operation (read or write).

• They belong to the same block device (i.e. Read from the same block device, or are written to the
same block device.

• Each block device has a set maximum number of sectors allowed per request. As such, the
extended block device request should not exceed this limit in order for the merge to occur.

• The block device requests to be merged immediately follow or precede each other.

Read requests are crucial to system performance because a process cannot commence unless its
read request is serviced. This latency directly affects a user's perception of how fast a process takes to
finish.

1 https://bugzilla.redhat.com/enter_bug.cgi?product=Red%20Hat%20Enterprise%20Linux
%205&bug_status=NEW&version=5.2&component=Performance_Tuning_Guide&rep_platform=All&op_sys=Linux&priority=low&bug_severity=low&assigned_to=&cc=&alias=&estimated_time_presets=0.0&estimated_time=0.0&bug_file_loc=http
%3A%2F
%2F&short_desc=&comment=&status_whiteboard=&qa_whiteboard=&devel_whiteboard=&keywords=&issuetrackers=&dependson=&blocked=&ext_bz_id=0&ext_bz_bug_id=&data=&description=&contenttypemethod=autodetect&contenttypeselection=text
%2Fplain&contenttypeentry=&maketemplate=Remember%20values%20as%20bookmarkable
%20template&form_name=enter_bug

https://bugzilla.redhat.com/enter_bug.cgi?product=Red%20Hat%20Enterprise%20Linux%205&bug_status=NEW&version=5.2&component=Performance_Tuning_Guide&rep_platform=All&op_sys=Linux&priority=low&bug_severity=low&assigned_to=&cc=&alias=&estimated_time_presets=0.0&estimated_time=0.0&bug_file_loc=http%3A%2F%2F&short_desc=&comment=&status_whiteboard=&qa_whiteboard=&devel_whiteboard=&keywords=&issuetrackers=&dependson=&blocked=&ext_bz_id=0&ext_bz_bug_id=&data=&description=&contenttypemethod=autodetect&contenttypeselection=text%2Fplain&contenttypeentry=&maketemplate=Remember%20values%20as%20bookmarkable%20template&form_name=enter_bug
https://bugzilla.redhat.com/enter_bug.cgi?product=Red%20Hat%20Enterprise%20Linux%205&bug_status=NEW&version=5.2&component=Performance_Tuning_Guide&rep_platform=All&op_sys=Linux&priority=low&bug_severity=low&assigned_to=&cc=&alias=&estimated_time_presets=0.0&estimated_time=0.0&bug_file_loc=http%3A%2F%2F&short_desc=&comment=&status_whiteboard=&qa_whiteboard=&devel_whiteboard=&keywords=&issuetrackers=&dependson=&blocked=&ext_bz_id=0&ext_bz_bug_id=&data=&description=&contenttypemethod=autodetect&contenttypeselection=text%2Fplain&contenttypeentry=&maketemplate=Remember%20values%20as%20bookmarkable%20template&form_name=enter_bug
https://bugzilla.redhat.com/enter_bug.cgi?product=Red%20Hat%20Enterprise%20Linux%205&bug_status=NEW&version=5.2&component=Performance_Tuning_Guide&rep_platform=All&op_sys=Linux&priority=low&bug_severity=low&assigned_to=&cc=&alias=&estimated_time_presets=0.0&estimated_time=0.0&bug_file_loc=http%3A%2F%2F&short_desc=&comment=&status_whiteboard=&qa_whiteboard=&devel_whiteboard=&keywords=&issuetrackers=&dependson=&blocked=&ext_bz_id=0&ext_bz_bug_id=&data=&description=&contenttypemethod=autodetect&contenttypeselection=text%2Fplain&contenttypeentry=&maketemplate=Remember%20values%20as%20bookmarkable%20template&form_name=enter_bug
https://bugzilla.redhat.com/enter_bug.cgi?product=Red%20Hat%20Enterprise%20Linux%205&bug_status=NEW&version=5.2&component=Performance_Tuning_Guide&rep_platform=All&op_sys=Linux&priority=low&bug_severity=low&assigned_to=&cc=&alias=&estimated_time_presets=0.0&estimated_time=0.0&bug_file_loc=http%3A%2F%2F&short_desc=&comment=&status_whiteboard=&qa_whiteboard=&devel_whiteboard=&keywords=&issuetrackers=&dependson=&blocked=&ext_bz_id=0&ext_bz_bug_id=&data=&description=&contenttypemethod=autodetect&contenttypeselection=text%2Fplain&contenttypeentry=&maketemplate=Remember%20values%20as%20bookmarkable%20template&form_name=enter_bug
https://bugzilla.redhat.com/enter_bug.cgi?product=Red%20Hat%20Enterprise%20Linux%205&bug_status=NEW&version=5.2&component=Performance_Tuning_Guide&rep_platform=All&op_sys=Linux&priority=low&bug_severity=low&assigned_to=&cc=&alias=&estimated_time_presets=0.0&estimated_time=0.0&bug_file_loc=http%3A%2F%2F&short_desc=&comment=&status_whiteboard=&qa_whiteboard=&devel_whiteboard=&keywords=&issuetrackers=&dependson=&blocked=&ext_bz_id=0&ext_bz_bug_id=&data=&description=&contenttypemethod=autodetect&contenttypeselection=text%2Fplain&contenttypeentry=&maketemplate=Remember%20values%20as%20bookmarkable%20template&form_name=enter_bug
https://bugzilla.redhat.com/enter_bug.cgi?product=Red%20Hat%20Enterprise%20Linux%205&bug_status=NEW&version=5.2&component=Performance_Tuning_Guide&rep_platform=All&op_sys=Linux&priority=low&bug_severity=low&assigned_to=&cc=&alias=&estimated_time_presets=0.0&estimated_time=0.0&bug_file_loc=http%3A%2F%2F&short_desc=&comment=&status_whiteboard=&qa_whiteboard=&devel_whiteboard=&keywords=&issuetrackers=&dependson=&blocked=&ext_bz_id=0&ext_bz_bug_id=&data=&description=&contenttypemethod=autodetect&contenttypeselection=text%2Fplain&contenttypeentry=&maketemplate=Remember%20values%20as%20bookmarkable%20template&form_name=enter_bug
https://bugzilla.redhat.com/enter_bug.cgi?product=Red%20Hat%20Enterprise%20Linux%205&bug_status=NEW&version=5.2&component=Performance_Tuning_Guide&rep_platform=All&op_sys=Linux&priority=low&bug_severity=low&assigned_to=&cc=&alias=&estimated_time_presets=0.0&estimated_time=0.0&bug_file_loc=http%3A%2F%2F&short_desc=&comment=&status_whiteboard=&qa_whiteboard=&devel_whiteboard=&keywords=&issuetrackers=&dependson=&blocked=&ext_bz_id=0&ext_bz_bug_id=&data=&description=&contenttypemethod=autodetect&contenttypeselection=text%2Fplain&contenttypeentry=&maketemplate=Remember%20values%20as%20bookmarkable%20template&form_name=enter_bug


Schedulers / Elevators

5

Write requests, on the other hand, are serviced by batch by pdflush kernel threads. Since write
requests do not block processes (unlike read requests), they are usually given less priority than read
requests.

Read/Write requests can be either sequential or random. The speed of sequential requests is most
directly affected by the transfer speed of a disk drive. Random requests, on the other hand, are most
directly affected by disk drive seek time.

Sequential read requests can take advantage of read-aheads. Read-ahead assumes that an
application reading from disk block X will also next ask to read from disk block X+1, X+2, etc. When
the system detects a sequential read, it caches the following disk block ahead in memory, then repeats
once the cached disk block is read. This strategy decreases seek time, which ultimately improves
application response time. The read-ahead mechanism is turned off once the system detects a non-
sequential file access.

3. Schedulers / Elevators
Generally, the I/O subsystem does not operate in a true FIFO manner. It processes queued read/write
requests depending on the selected scheduler algorithms. These scheduler algorithms are called
elevators. Elevators were introduced in the 2.6 kernel.

Scheduler algorithms are sometimes called “elevators” because they operate in the same manner that
real-life building elevators do. The algorithms used to operate real-life building elevators make sure
that it services requests per floor efficiently. To be efficient, the elevator does not travel to each floor
depending on which one issued a request to go up or down first. Instead, it moves in one direction at a
time, taking as many requests as it can until it reaches the highest or lowest floor, then does the same
in the opposite direction.

Simply put, these algorithms schedule disk I/O requests according to which logical block address
on disk they are targeted to. This is because the most efficient way to access the disk is to keep the
access pattern as sequential (i.e. moving in one direction) as possible. Sequential, in this case, means
“by increasing logical block address number”.

As such, a disk I/O request targeted for disk block 100 will normally be scheduled before a disk I/O
request targeted for disk block 200. This is typically the case, even if the disk I/O request for disk block
200 was issued first.

However, the scheduler/elevator also takes into consideration the need for ALL disk I/O requests
(except for read-ahead requests) to be processed at some point. This means that the I/O subsystem
will not keep putting off a disk I/O request for disk block 200 simply because other requests with lower
disk address numbers keep appearing. The conditions which dictate the latency of unconditional disk I/
O scheduling is also set by the selected elevator (along with any specified request queue parameters).

There are several types of schedulers:

• deadline

• as

• cfq

• noop

These scheduler types are discussed individually in the following sections.



Red Hat Enterprise Linux 5 IO Tuning Guide

6

4. Selecting a Scheduler
To specify a scheduler to be selected at boot time, add the following directive to the kernel line in /
boot/grub/grub.conf:

elevator=<elevator type>

For example, to specify that the noop scheduler should be selected at boot time, use:

elevator=noop

You can also select a scheduler during runtime. To do so, use this command:

echo <elevator type> > /sys/block/<device>/queue/scheduler

For example, to set the noop scheduler to be used on hda, use:

echo noop > /sys/block/hda/queue/scheduler

At any given time, you can view /sys/block/<device>/queue/scheduler (using cat, for
example) to verify which scheduler is being used by <device>. For example, if hda is using the noop
scheduler, then cat /sys/block/hda/queue/scheduler should return:

[noop] anticipatory deadline cfq

Note that selecting a scheduler in this manner is not persistent throughout system reboots. Unlike the
/proc/sys/ file system, the /sys/ file system does not have a utility similar to sysctl that can
make such changes persistent throughout system reboots.

To make your scheduler selection persistent throughout system reboots, edit /boot/grub/
grub.conf accordingly. Do this by appending elevator=<scheduler> to the the kernel line.
<scheduler> can be either noop, cfq, as (for anticipatory), or deadline.

For example, to ensure that the system selects the noop scheduler at boot-time:

title Red Hat Enterprise Linux Server (2.6.18-32.el5)
 root (hd0,4)
 kernel /boot/vmlinuz-2.6.18-32.el5 ro root=LABEL=/1 rhgb quiet
 elevator=noop
 initrd /boot/initrd-2.6.18-32.el5.img

5. Tuning a Scheduler and Device Request Queue
Parameters
Once you have selected a scheduler, you can also further tune its behavior through several request
queue parameters. Every I/O scheduler has its set of tunable options. These options are located (and
tuned) in /sys/block/<device>/queue/iosched/.

In addition to these, each device also has tunable request queue parameters located in /sys/
block/<device>/queue/.

Scheduler options and device request queue parameters are set in the same fashion. To set these
tuning options, echo the specified value to the specified tuning option, i.e.:



Request Queue Parameters

7

echo <value> > /sys/block/<device>/queue/iosched/<option>

For example: the system is currently using the anticipatory scheduler for device hda. To change /
sys/block/hda/queue/iosched/read_expire to 80 milliseconds, use:

echo 80 > /sys/block/hda/queue/iosched/read_expire

However, as mentioned in Section 4, “Selecting a Scheduler”, any tuning made though echo
commands to the /sys/ file system is not persistent thoughout system reboots. As such, to make any
scheduler selection/request queue settings persistent throughout system reboots, use /etc/rc.d/
rc.local.

5.1. Request Queue Parameters
Block devices have the following tunable parameters:

nr_requests
This file sets the depth of the request queue. nr_requests sets the maximum number of disk I/O
requests that can be queued up. The default value for this is dependent on the selected scheduler.

If nr_requests is set higher, then generally the I/O subsystem will have a larger threshold at which it
will keep scheduling requests by order of increasing disk block number. This keeps the I/O subsystem
moving in one direction longer, which in most cases is the most efficient way of handling disk I/O.

read_ahead_kb
This file sets the size of read-aheads, in kilobytes. As discussed in Section 2, “The I/O Subsystem”,
the I/O subsystem will enable read-aheads once it detects a sequential disk block access. This file
sets the amount of data to be “pre-fetched” for an application and cached in memory to improve read
response time.

6. Scheduler Types
This section describes the different behaviors of each type of scheduler. For instructions on how
to select a scheduler, refer to Section 4, “Selecting a Scheduler”. For instructions on how to tune
scheduler options, refer to Section 5, “Tuning a Scheduler and Device Request Queue Parameters”.

6.1. cfq Scheduler
The completely fair queueing (cfq) scheduler aims to equally divide all available I/O bandwidth
among all processes issuing I/O requests. It is best suited for most medium and large multi-processor
systems, as well as systems which required balanced I/O performance over several I/O controllers and
LUNs. As such, cfq is the default scheduler for Red Hat Enterprise Linux 5.

The cfq scheduler maintains a maximum of 64 internal request queues; each process running on the
system is assigned is assigned to any of these queues. Each time a process submits a synchronous I/
O request, it is moved to the assigned internal queue. Asynchronous requests from all processes are
batched together according to their process's I/O priority; for example, all asynchronous requests from
processes with a scheduling priority of "idle" (3) are put into one queue.

During each cycle, requests are moved from each non-empty internal request queue into one dispatch
queue. in a round-robin fashion. Once in the dispatch queue, requests are ordered to minimize disk
seeks and serviced accordingly.



Red Hat Enterprise Linux 5 IO Tuning Guide

8

To illustrate: let's say that the 64 internal queues contain 10 I/O request seach, and quantum is set to
8. In the first cycle, the cfq scheduler will take one request from each of the first 8 internal queues.
Those 8 requests are moved to the dispatch queue. In the next cycle (given that there are 8 free slots
in the dispatch queue) the cfq scheduler will take one request from each of the next batches of 8
internal queues.

Example 1. How the cfq scheduler works

The tunable variables for the cfq scheduler are set in files found under /sys/block/<device>/
queue/iosched/. These files are:

quantum
Total number of requests to be moved from internal queues to the dispatch queue in each cycle.

queued
Maximum number of requests allowed per internal queue.

Prioritizing I/O Bandwidth for Specific Processes
When the cfq scheduler is used, you can adjust the I/O throughput for a specific process using
ionice. ionice allows you to assign any of the following scheduling classes to a program:

• idle (lowest priority)

• best effort (default priority)

• real-time (highest priority)

For more information about ionice, scheduling classes, and scheduling priorities, refer to man
ionice.

6.2. deadline Scheduler
The deadline scheduler assigns an expiration time or “deadline” to each block device request. Once
a request reaches its expiration time, it is serviced immediately, regardless of its targeted block device.
To maintain efficiency, any other similar requests targeted at nearby locations on disk will also be
serviced.

The main objective of the deadline scheduler is to guarantee a response time for each request.
This lessens the likelihood of a request getting moved to the tail end of the request queue because its
location on disk is too far off.

In some cases, however, this comes at the cost of disk efficiency. For example, a large number of read
requests targeted at locations on disk far apart from each other can result in excess read latency.

The deadline scheduler aims to keep latency low, which is ideal for real-time workloads. On servers
that receive numerous small requests, the deadline scheduler can help by reducing resource
management overhead. This is achieved by ensuring that an application has a relatively low number of
outstanding requests at any one time.

The tunable variables for the deadline scheduler are set in files found under /sys/
block/<device>/queue/iosched/. These files are:



anticipatory Scheduler

9

read_expire
The amount of time (in milliseconds) before each read I/O request expires. Since read requests
are generally more important than write requests, this is the primary tunable option for the
deadline scheduler.

write_expire
The amount of time (in milliseconds) before each write I/O request expires.

fifo_batch
When a request expires, it is moved to a "dispatch" queue for immediate servicing. These expired
requests are moved by batch. fifo_batch specifies how many requests are included in each
batch.

writes_starved
Determines the priority of reads over writes. writes_starved specifies how many read requests
should be moved to the dispatch queue before any write requests are moved.

front_merges
In some instances, a request that enters the deadline scheduler may be contiguous to another
request in that queue. When this occurs, the new request is normally merged to the back of the
queue.

front_merges controls whether such requests should be merged to the front of the queue
instead. To enable this, set front_merges to 1. front_merges is disabled by default (i.e. set to
0).

6.3. anticipatory Scheduler
An application that issues a read request for a specific disk block may also issue a request for the next
disk block after a certain think time. However, in most cases, by the time the request for the next disk
block is issued, the disk head may have already moved further past. This results in additional latency
for the application.

To address this, the anticipatory scheduler enforces a delay after servicing an I/O requests before
moving to the next request. This gives an application a window within which to submit another I/
O request. If the next I/O request was for the next disk block (as anticipated), the anticipatory
scheduler helps ensure that it is serviced before the disk head has a chance to move past the targeted
disk block.

Read and write requests are dispatched and serviced in batches. The anticipatory scheduler
alternates between dispatching/servicing batches of read and write requests. The frequency,
amount of time and priority given to each batch type depends on the settings configured in /sys/
block/<device>/queue/iosched/.

The cost of using the anticipatory scheduler is the overall latency caused by numerous enforced
delays. You should consider this trade-off when assessing the suitability of the anticipatory
scheduler for your system. In most small systems that use applications with many dependent reads,
the improvement in throughput from using the anticipatory scheduler significantly outweighs the
overall latency.

The anticipatory scheduler tends to be recommended for servers running data processing
applications that are not regularly interrupted by external requests. Examples of these are servers
dedicated to compiling software. For the most part, the anticipatory scheduler performs well on
most personal workstations, but very poorly for server-type workloads.



Red Hat Enterprise Linux 5 IO Tuning Guide

10

The tunable variables for the anticipatory scheduler are set in files found under /sys/
block/<device>/queue/iosched/. These files are:

read_expire
The amount of time (in milliseconds) before each read I/O request expires. Once a read or write
request expires, it is serviced immediately, regardless of its targeted block device. This tuning
option is similar to the read_expire option of the deadline scheduler (for more information,
refer to Section 6.2, “deadline Scheduler”.

Read requests are generally more important than write requests; as such, it is advisable to issue a
faster expiration time to read_expire. In most cases, this is half of write_expire.

For example, if write_expire is set at 248, it is advisable to set read_expire to 124.

write_expire
The amount of time (in milliseconds) before each write I/O request expires.

read_batch_expire
The amount of time (in milliseconds) that the I/O subsystem should spend servicing a
batch of read requests before servicing pending write batches (if there are any). . Also,
read_batch_expire is typically set as a multiple of read_expire.

write_batch_expire
The amount of time (in milliseconds) that the I/O subsystem should spend servicing a batch of
write requests before servicing pending write batches.

antic_expire
The amount of time (in milliseconds) to wait for an application to issue another I/O request before
moving on to a new request.

6.4. noop Scheduler
Among all I/O scheduler types, the noop scheduler is the simplest. While it still implements request
merging, it moves all requests into a simple unordered queue, where they are processed by the disk in
a simple FIFO order. The noop scheduler has no tunable options

The noop scheduler is suitable for devices where there are no performance penalties for seeks.
Examples of such devices are ones that use flash memory. noop can also be suitable on some
system setups where I/O performance is optimized at the block device level, with either an intelligent
host bus adapter, or a controller attached externally.

Index
A
Audience

Introduction, 2

I
Introduction

Audience, 2



Revision History

11

A. Revision History
Revision History
Revision 1.0 Tue Sep 23 2008 DonDomingoddomingo@redhat.com
updated to build on Publican 0.36
under product heading Whitepapers now

mailto:ddomingo@redhat.com


12


	Red Hat Enterprise Linux 5 IO Tuning Guide
	Table of Contents
	1. Preface
	1.1. Audience
	1.2. Document Conventions
	1.3. Feedback

	2. The I/O Subsystem
	3. Schedulers / Elevators
	4. Selecting a Scheduler
	5. Tuning a Scheduler and Device Request Queue Parameters
	5.1. Request Queue Parameters

	6. Scheduler Types
	6.1. cfq Scheduler
	6.2. deadline Scheduler
	6.3. anticipatory Scheduler
	6.4. noop Scheduler

	Index
	A. Revision History

