
Virtual Memory

Management in

Modern Linux Systems

Whitepaper

This document deals with the basics of virtual

memory management on systems with an Intel

architecture, with the goal of deriving fundamen-

tal conclusions for the implementation of two al-

ternative systems in the Linux kernel. A second

section of the paper justifies the decision for im-

plementation at SUSE LINUX AG. By way of provid-

ing a corollary, we then explain simple rules re-

garding application profiles for which differences

in virtual memory management are generally im-

portant, followed by several comparative notes

on 64-bit platforms.

The purpose of this whitepaper is to help further

understanding of the type of virtual memory

management used in a Linux kernel from SUSE

LINUX AG. An enhancement currently offered by

other Linux OS vendors under the name “4/4 GB

Split” for kernel implementation is not required

in a SUSE kernel.

Virtual Memory Management

in Modern Linux Systems

Basics p. 3

The Dilemma......................... p. 4

Possible Solutions p. 6

Whitepaper: Virtual Memory Management in Modern Linux Systems © 2004, SUSE LINUX AG, page 2/6

© SUSE LINUX AG 2004

Linux is a registered trademark of Linus Torvalds.

UNIX is a registered trademark of The Open Group.

All other company, product, and service names or designations may be trademarks

or service marks or registered trademarks or service marks of other companies

around the world and shall be treated as such.

Virıal

in Modern Linux Systems – Facts and Myths

Memory Managemät

A 32-bit CPU can manage a maximum of 4 GB

(4,294,967,296 bytes) at a time. This also means that an

application program itself, for example, cannot become

larger than 4 GB. Such a program, however, usually does

not run autonomously. Instead, it communicates with other

programs and in doing so, uses operating system func-

tions, which in Linux are provided primarily by the Linux

kernel. This means that a certain segment of the 4 GB of

memory (normally, just under 1 GB) is required by the

kernel in order to enable the application program to com-

municate. The Linux kernel uses this segment to create a

table, among other things, that represents the system’s

actual memory configuration. In the process, the system

organizes available memory into so-called storage pages

of 4 KB each.

If the user now wishes to quasi-simultaneously run mul-

tiple programs that all require less than 4 GB of memory

each, but together require a total of significantly more

than 4 GB of memory, he faces a dilemma. This dilemma

was recognized early on and it was solved by providing

virtual memory. In the process, the operating system simu-

lates nearly infinite storage capacity that can be made

available for use by the application. The system accom-

plishes this by swapping out storage pages that are cur-

rently not in use from the faster main memory to the slow-

er external mass storage device. The operating system

uses the gaps that become available in this manner to

provide the requesting program with actual memory cap-

acity. The amount of memory that can be made available

is limited in practice only by the size of the external mass

storage device. Such procedures are known as “swapping”

and “paging”. Swapping refers to a full swapping out of

memory segments, while paging primarily refers to hard-

ware support provided by the memory management unit

(MMU), which normally assists the CPU or is integrated in

it. When the system accesses memory pages that are cur-

rently hidden, the CPU receives a signal that enables the

operating system to show the page again, for example, in

exchange for another page that has not been in use for

some time.

BaÁcs
First, some background information and a few fundamental facts that describe

(a) why virtual memory management is necessary in the first place, and

(b) other issues that are relevant in this context.

As long as there have been computers, programmers have

been struggling with the fact that there are different

types of memory they can use for their programs and

data. In addition, different storage media vary substan-

tially with respect to their data delivery speed or general

data processing speed.

Simply put, there are two types of storage devices whose

processing speeds differ significantly, which is why they

are used for different purposes.

(1) Main memory (RAM and caches)

(2) External mass storage devices

Main memory refers to the actual portion of memory ac-

cessible to a program. If one program, or the combination

of several applications and the operating system require

more memory than is physically available, the system is

reaching its limits. In these situations, Linux provides so-

called virtual memory, which makes it possible for pro-

grams to run on systems with significantly less physical

storage capacity than is actually needed to run all pro-

grams at the same time. All types of main memory are

temporary, which means that their contents are lost after,

for example, a power failure. External mass storage devices

are primarily used for storing data intended to survive

such emergency situations. In addition, they are also used

to provide virtual memory.

Whitepaper: Virtual Memory Management in Modern Linux Systems © 2004, SUSE LINUX AG, page 3/6

Linux can administer up to a maximum of 64 GB of physical

memory on Intel-compatible 32-bit systems. Since no

more than 4 GB of data is visible or usable at a time, the

system uses additional memory in excess of 4 GB through

a feature developed by Intel, the so-called physical ad-

dress extension (PAE). In Linux, this type of memory is

referred to as high memory, in contrast to permanent low

memory that can be addressed directly. PAE is a 3-step

process that, simply put, takes storage capacity from high

memory and temporarily inserts it in the visible 4 GB seg-

ment.

The Linux kernel lets the user configure the ratio of the

application program’s usable/reserved memory to the

memory reserved for the kernel, so that it is possible to

realize a maximum size of 3.5 GB for the application pro-

gram. Since the usual ratio is 3:1, it is apparent that max-

imum memory usage can be tight for certain parts of the

kernel (e. g., the table in which the kernel manages all of

the memory pages in the system). Therefore, in specific

individual cases the decision to use a ratio of 3.5:0.5

makes sense. For each memory page that Linux manages

in the system, the kernel allocates a descriptor that takes

up 44 bytes of space.

It isn’t difficult to calculate the size of this table alone:

((n x bytes RAM) / 4,096 bytes) * 44 bytes

One fact should not be overlooked as part of the larger

picture, PAE is a slower process than direct addressing of

“only” a maximum of 4 GB of storage capacity. Tests have

shown that extensive use of PAE results in an average

decrease of 5% in overall system performance. Moreover,

if a program itself also uses additional options, such as

the temporary inclusion of additional memory via tmpfs,

one should expect a performance drop of at least 10%.

Therefore, the operating system’s, or rather the virtual

memory manager’s actual memory management efficiency

is a very important factor. However, PAE and the specified

measures for increasing a system’s memory itself still

work faster than an operating system that must actually

swap memory in and out of the main memory to and from

external, slow hard drives.

In the development of Linux, there have been at least two

types of memory management algorithms that have

evolved since the introduction of kernel version 2.4. The

original algorithm was developed by Rik von Riel (who is

currently a kernel developer at Red Hat) and soon turned

out to be inadequate for the serious usage of Linux on

productive systems. To solve this problem, Andrea Arcan-

geli (kernel developer at SUSE LINUX AG) developed a new

type of virtual memory management, which is generally

known today as AA-VM. By now, it is commonly used as

the basis and standard for 2.4 kernels. Van Riel further

developed his version and created the so-called RMAP-VM.

This version, however, has some fundamental restrictions

compared to the AA-VM standard.

Ò Di¨mma
However, we do not want to create the impression that virtual memory management can

stretch physical limitations. The fact remains that a 32-bit CPU cannot directly address

more than 4 GB of memory, and therefore a program cannot become larger than 4 GB,

minus the amount of data described above needed to manage a program. However, the

issue of data needed by the operating system to manage a program is precisely a factor

that should not be underestimated, as illustrated below.

Whitepaper: Virtual Memory Management in Modern Linux Systems © 2004, SUSE LINUX AG, page 4/6

The most fundamental functional difference between

RMAP-VM compared to AA-VM may well be its usage of

kernel memory in general and the additional usage of ad-

ministration data (RMAP chains) in low memory. Compared

to AA-VM, this means that the system must make use of

memory from the high memory pool much more quickly,

which impairs overall performance by an additional 10%,

on average.

In the final analysis, RMAP-VM can create a situation where

an application program operating under extreme condi-

tions has less memory available than it would with AA-VM.

To resolve this situation, Red Hat recently announced a

new feature that

(a) is intended to create a 4/4 GB split between kernel and

application program, and

(b) moves the Red Hat kernel farther away from the stand-

ard.

The purpose of the 4/4 GB split is to make available 4 GB

of memory to the application program as well as to the

Linux kernel. The above explanations show that

• data segments must be reserved for communication

between both parts, so that less than 4 GB of memory

is actually available to the application,

• each interrupt that occurs during the processing of

the application program and the kernel necessarily re-

quires switching of those memory segments located

outside of the current process context, which further

impairs performance, and

• communication between the two segments is signifi-

cantly slower, since it is not possible to access the

user area directly from the kernel.

Consequently, with RMAP-VM, the 4/4 split avoids limita-

tion of the maximum memory available for use by the ap-

plication program. These limitations are caused by the

allocation in low memory of portions of administration

information (RMAP chains) that the Linux kernel uses to

address virtual memory and swapped out memory, if ap-

plicable. However, significant consequences remain for

system performance at a magnitude of at least 10-15%

performance loss, on average, compared to a standard

kernel. Due to the characteristics of SUSE LINUX kernels

and the AA-VM they contain, a 4/4 GB split makes sense –

if it does at all – only for systems with at least 32 GB of

main memory or more. Such systems can generate mem-

ory mapping-related administration overhead of a magni-

tude that can truly limit an application in terms of avail-

able resources to the point that 3 GB of memory are no

longer available to the application.

Ò Di¨mma

Another very general observation is that this so-

lution clearly slows down each instance of access

from the kernel to the user area. Each time the

system switches modes like this it must cycle

through all of the page tables in order to take an

address that is valid in the kernel and convert it

into a corresponding address that is valid in the

user area. It is easy to imagine what this means,

for example, in terms of the resulting bandwidth

for copy actions via a gigabit interface while, for

example, a database application is working sim-

ultaneously to insert a new record.

Whitepaper: Virtual Memory Management in Modern Linux Systems © 2004, SUSE LINUX AG, page 5/6

If you are truly faced with the need to provide an applica-

tion program with more than 4 GB of usable address

space, we recommend that you switch to a system with a

64-bit architecture and address space. In reality, you

should already consider doing this with programs that

need more than 2-3 GB of memory for a single process.

64-bit architectures were already marketed a decade ago

to avoid the restrictions imposed by 32-bit addressing.

Initially, these architectures were marketed for use with

large enterprise applications. Given today's standard ap-

plications, however, a mid-sized company already pretty

much runs up against the performance limitations of

today’s 32-bit platforms. With the introduction of 64-bit

platforms, Intel and AMD are now reaching markets that

were unavailable just a few years ago. Due to their appeal-

ing prices, it will be a long time before 32-bit platforms

play a less significant role in the market than they do

today. This fact, along with the huge selection of 32-bit

software, are among the reasons why systems based on

current Intel IA-32 architecture will need a 32-bit emulation

mode in the foreseeable future. The SUSE LINUX imple-

mentation provides native support for both modes.

By now, there are a number of systems specifically de-

signed for use in the scenarios described here. These sys-

tems are now as stable and as well tested as 32-bit sys-

tems. Moreover, AMD’s 64-bit processors are a cost-

efficient variant that not only provide the luxury of

549,755,813,888 bytes of directly addressable memory

but also a high-performance 32-bit compatibility mode

that allows users to continue using all their long-time fa-

miliar, stable and well-tested software without any changes.

(Today, Linux supports a maximum of 512 GB of address

space per application program, while today’s hardware

already provides an additional 248 bits of virtual address-

ing). Intel itself, of course, has already been offering 64-bit

processors for quite some time (Itanium 2, IA-64). IBM/

Motorola’s PPC970 provides another option when IA-32

compatibility is not required, as does IBM's zSeries, which

should also be included in these considerations. Finally, it

should be kept in mind that the above issues do not affect

the average user, but only those 3% of all users, who, for

example, are already using SAP today with accordingly

giant database applications.

poßible Ëlutions
The facts listed here illustrate that

(a) a current SUSE LINUX kernel with AA-VM has sufficient capacity to run application programs on systems with a

maximum of up to 32 GB of main memory – without even coming close to exhausting system resources, as is the

case with RMAP-VM, and

(b) use of high memory on a 32-bit Intel system has noticeable consequences for system performance as a whole.

Virtual memory management is an issue of vital importance wherever appli-

cations are running up close to or even beyond the limits of actual memory

capacity. Current examples are database systems or SAP application servers

for which the 32-bit capacity of real, addressable memory is no longer suffi-

cient. Applications that do not fall in this category generally do not derive

any advantages from 64-bit systems with shifted physical boundaries. Ex-

amples of this application category include word processing programs, small

to medium-sized databases and web servers.

At the time of this document's creation, SUSE estimates

that the issues discussed above are of relevance to

about 3% of all newly purchased systems.

Whitepaper: Virtual Memory Management in Modern Linux Systems © 2004, SUSE LINUX AG, page 6/6

	Virtual Memory Management in Modern Linux Systems
	Introduction and Table of Contents
	Basics
	The Dilemma
	Possible Solutions

